Statistical Methodology for Very Small (and Very Large) Studies

Geert Molenberghs

Interuniversity Institute for Biostatistics and statistical Bioinformatics (I-BioStat)
Universiteit Hasselt \& KU Leuven, Belgium
geert.molenberghs@uhasselt.be \& geert.molenberghs@kuleuven.be
www.ibiostat.be

The Epilepsy Data

- Randomized, double-blind, parallel group multi-center study
- placebo (45) \longleftrightarrow new anti-epileptic drug (AED; 44)
- 12-week run-in period \& 16 weeks of follow up (some until week 27)
- outcome: the number of epileptic seizures experienced during the last week
- research question: reduction in \# seizures by new therapy

The Standard Poisson-normal Model

- The essence:
\triangleright Poisson regression model for epileptic seizures
\triangleright Random effects to accommodate within-subject correlation
- Poisson formulation:

$$
\begin{aligned}
Y_{i j} & \sim \operatorname{Poi}\left(\lambda_{i j}\right) \\
\ln \left(\lambda_{i j}\right) & =\boldsymbol{x}_{i j}^{\prime} \boldsymbol{\beta}+\boldsymbol{z}_{i j}^{\prime} \boldsymbol{b}_{\boldsymbol{i}} \\
\boldsymbol{b}_{\boldsymbol{i}} & \sim N(\mathbf{0}, D)
\end{aligned}
$$

Features Present

Count data	Poisson model
Correlation	Normal random effects
Overdispersion	Normal random effects

A Combined Model:

The Poisson-gamma-normal Model

- Features Present:

Count data	Poisson model
Correlation	Normal random effects
Overdispersion	Normal random effects Gamma random effects

The Poisson-gamma-normal Model

- Easy to fit in SAS procedure NLMIXED
- Model for the epilepsy data:

$$
\begin{aligned}
\ln \left(\lambda_{i j}\right) & = \begin{cases}\left(\beta_{00}+b_{i}\right)+\beta_{01} t_{i j} & \text { if placebo } \\
\left(\beta_{10}+b_{i}\right)+\beta_{11} t_{i j} & \text { if treated, }\end{cases} \\
b_{i} & \sim N(0, d)
\end{aligned}
$$

Parameter Estimates

		Poisson	Negative-binomial
Effect	Parameter	Estimate (s.e.)	Estimate (s.e.)
Intercept placebo	β_{00}	$1.2662(0.0424)$	$1.2594(0.1119)$
Slope placebo	β_{01}	$-0.0134(0.0043)$	$-0.0126(0.0111)$
Intercept treatment	β_{10}	$1.4531(0.0383)$	$1.4750(0.1093)$
Slope treatment	β_{11}	$-0.0328(0.0038)$	$-0.0352(0.0101)$
Negative-binomial parameter	α_{1}	-	$0.5274(0.0255)$
Negative-binomial parameter	$\alpha_{2}=1 / \alpha_{1}$	-	$1.8961(0.0918)$
Variance of random intercepts	d	-	-
			Poisson-normal
Effect	Earameter	Estimate (s.e.)	Estimate (s.e.)
Intercept placebo	β_{0}	$0.8179(0.1677)$	$0.9112(0.1755)$
Slope placebo	β_{1}	$-0.0143(0.0044)$	$-0.0248(0.0077)$
Intercept treatment	β_{0}	$0.6475(0.1701)$	$0.6555(0.1782)$
Slope treatment	β_{2}	$-0.0120(0.0043)$	$-0.0118(0.0074)$
Negative-binomial parameter	α_{1}	-	$2.4640(0.2113)$
Negative-binomial parameter	$\alpha_{2}=1 / \alpha_{1}$	-	$0.4059(0.0348)$
Variance of random intercepts	d	$1.1568(0.1844)$	$1.1289(0.1850)$

Implications for Correlation Function

| | | Smallest value | | | Largest value | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Model | Arm | ρ | time pair | | ρ | time pair |
| Poisson-normal | placebo | 0.8577 | $26 \& 27$ | | 0.8960 | $1 \& 2$ |
| Poisson-normal | treatment | 0.8438 | $26 \& 27$ | 0.8794 | $1 \& 2$ | |
| Combined | placebo | 0.3041 | $26 \& 27$ | | 0.3134 | $1 \& 2$ |
| Combined | treatment | 0.2234 | $1 \& 2$ | | 0.3410 | $26 \& 27$ |

Implications for Hypothesis Testing

p-values

Model

$$
H_{0}: \beta_{11}-\beta_{01}=0
$$

$H_{0}: \beta_{11} / \beta_{01}=1$

Poisson	$\mathbf{0 . 0 0 0 8}$	$\mathbf{0 . 0 0 3 8}$
Poisson-normal	0.7115	$\mathbf{0 . 0 3 7 6}$
negative-binomial	$\mathbf{0 . 0 1 3 1}$	0.2815
combined	0.2260	0.1591

But: Aren't There Influential Subjects?

- For which subjects do small perturbations of ω_{i} generate large effects?

$$
\ell=\sum_{i=1}^{N} \omega_{i} \ell_{i}
$$

- Apart from low profiles and high profiles, there are oscillators
- Upon removal: treatment effect $0.013(0.011) \longrightarrow 0.022(0.011)$
(Rakhmawati, Molenberghs, Verbeke, and Faes 2016)

Features Present

Count data	Poisson model
Correlation	Normal random effects
Overdispersion	Normal random effects
	Gamma random effects
Diagnostic tool	Local influence

But: How Do We Get a Marginal Interpretation?

- $\sqrt{ }$ First: Generalized Linear Mixed Model (GLMM) and its Combined Model (CM)
- Second: Marginalized Multilevel Model (MMM) and its Combined Model (COMMM)
- Third: Bridge Distributions

Features Present

Count data	Poisson model
Correlation	Normal random effects
Overdispersion	Normal random effects
	Gamma random effects
Diagnostic tool	Local influence
Marginal mean function	MMM \& COMMM \& bridge

Effect	Par.	Par. estimates and standard errors	
(a) Models without overdispersion random effects			
(1a) GLMM \&			
Intercept placebo	β_{00}	0.8179 (0.1677)	1.3960 (0.1887)
Slope placebo	β_{01}	-0.0143 (0.0044)	-0.0143 (0.0044)
Intercept treatment	β_{10}	0.6475 (0.1701)	1.2256 (0.1901)
Slope treatment	β_{11}	-0.0120 (0.0043)	-0.0120 (0.0043)
Std. dev. R.I.	\sqrt{d}	1.0755 (0.0857)	1.0755 (0.0857)
(c) Models with overdispersion random effects)			
(1b) CM \&			(2b) COMMM
Intercept placebo	β_{00}	0.9112 (0.1755)	1.4757 (0.1962)
Slope placebo	β_{01}	-0.0248 (0.0077)	-0.0248 (0.0077)
Intercept treatment	β_{10}	0.6555 (0.1782)	1.2200 (0.1970)
Slope treatment	β_{11}	-0.0118 (0.0075)	-0.0118 (0.0075)
Std. dev. R.I.	\sqrt{d}	1.0625 (0.0871)	1.0625 (0.0871)
Overdispersion	α	2.4640 (0.2113)	2.4640 (0.2113)

But: What About Excess Zeroes?

- Features Present:

Count data	Poisson model
Correlation	Normal random effects
Overdispersion	Normal random effects
	Gamma random effects
Diagnostic tool	Local influence
Marginal mean function	MMM \& COMMM \& bridge
Excess zeros	ZI- \& H-

		Poisson	Zero-Inflated Poisson	Negative Binomial	Zero-Inflated Negative Binomial
		Poisson Part			
Slope difference	$\beta_{01}-\beta_{11}$	$\mathbf{- 0 . 0 1 9 5 (\mathbf { 0 . 0 0 5 8 })}$	$\mathbf{- 0 . 0 2 1 4 (0 . 0 0 6 1)}$	$\mathbf{- 0 . 0 2 2 7 (0 . 0 1 5 0)}$	$\mathbf{- 0 . 0 1 4 7 (\mathbf { 0 . 0 1 5 3 })}$
		Zero-Inflated Part			
Intercept	γ_{0}	$-1.2879(0.1203)$		$-7.1064(1.3344)$	
Slope	γ_{1}	$0.0593(0.0109)$		$0.2921(0.0655)$	
Overdispersion	$v=\frac{1}{u}$		$0.5274(0.02553)$	$0.5595(0.03142)$	

			Zero-Inflated MMM	Combined MMM	Zero-Inflated Combined MMM
		MMM			
Slope diff.	$\beta_{01}-\beta_{11}$	$\mathbf{0 . 0 0 2 3 (\mathbf { 0 . 0 0 6 2 })}$	$\mathbf{- 0 . 0 0 3 1 (0 . 0 0 6 5)}$	$\mathbf{0 . 0 1 3 0 (0 . 0 1 0 7)}$	$\mathbf{0 . 0 0 8 0 (0 . 0 0 9 6)}$
	Poisson Part				
Intercept	γ_{0}	Zero-Inflated Part		$-2.4278(0.3206)$	
Slope	γ_{1}	$-2.2957(0.2963)$		$0.0662(0.0183)$	
Overdispersion	$v=\frac{1}{u}$	$0.0657(0.0166)$		$0.1792(0.0175)$	
Correlation	ρ	$-0.1382(0.1601)$		$-0.0795(0.1669)$	

Features Present \& Others

Count data	Poisson model				
Semi-continuous data					
Correlation	Normal random effects Mixtures of normals				
Overdispersion / Underdispersion	Normal random effects Gamma random effects				
Diagnostic tool	Local influence	$	$	Marginal mean function	MMM \& COMMM \& bridge
:---	:---				
Excess zeros	Zi- \& H-				
Inference paradigm	\ldots				
\ldots					

References

Iddi, S. and Molenberghs, G. (2013). A marginalized model for zero-inflated, overdispersed and correlated count data. Electronic Journal of Applied Statistical Analysis, 6, 149-165.

Kassahun, W., Neyens, T., Molenberghs, G., Faes C., and Verbeke, G. (2015). A joint model for hierarchical continuous and zero-inflated overdispersed count data. Journal of Statistical Computation and Simulation, 85, 552-571.

Kassahun, W., Neyens, T., Faes, C., Molenberghs, G., and Verbeke, G. (2014). A Zero-inflated overdispersed hierarchical Poisson model. Statistical Modeling, 14, 439-456.

Kassahun, W., Neyens, T., Molenberghs, G., Faes, C., and Verbeke, G. (2014). Marginalized multilevel hurdle and zero-inflated models for overdispersed and correlated count data with excess zeros. Statistics in Medicine, 33, 4402-4419.

Molenberghs, G. and Verbeke, G. (2011). On the Weibull-Gamma frailty model, its infinite moments, and its connection to generalized log-logistic, logistic, Cauchy, and extreme-value distributions. Journal of Statistical Planning and Inference, 141, 861-868.

Molenberghs, G., Verbeke, G., and Demétrio, C. (2007). An extended random-effects approach to modeling repeated, overdispersed count data. Lifetime Data Analysis, 13, 513-531.

Molenberghs, G., Verbeke, G., Demétrio, C.G.B., and Vieira, A. (2010). A family of generalized linear models for repeated measures with normal and conjugate random effects. Statistical Science, 25, 325-347.

Molenberghs, G., Verbeke, G., Efendi, A., Braekers, R., and Demétrio, C.G.B. (2015). A combined gamma frailty and normal random-effects model for repeated, overdispersed time-to-event data. Statistical Methods in Medical Research, 24, 434-452.

Rakhmawati, T., Molenberghs, G., Verbeke, G., and Faes, C. (2016). Local Influence Diagnostics for Incomplete Overdispersed Longitudinal Counts. Journal of Applied Statistics, 43, 1722-1737.

Rakhmawati, T., Molenberghs, G., Verbeke, G., and Faes, C. (2016). Local Influence Diagnostics for Hierarchical Count Data Models With Overdispersion and Excess Zeros. Biometrical Journal, 58, 1390-1408.

Rakhmawati, T., Molenberghs, G., Verbeke, G., and Faes, C. (2017). Local Influence Diagnostics for Generalized Linear Mixed Models With Overdispersion. Journal of Applied Statistics, 44, 620-641.

Vangeneugden, T., Molenberghs, G., Verbeke, G., and Demétrio, C. (2011). Marginal correlation from an extended random-effects model for repeated and overdispersed counts. Journal of Applied Statistics, 38, 215-232.

Standard Inference Paradigm: Maximum Likelihood Estimation

- Random outcome data $Y_{i}, i=1, \ldots, N$
- Possibly covariates \boldsymbol{x}_{i}
- Distribution described by density function $f\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)$
- $\boldsymbol{\theta}$ parameter to be estimated from the data
- Log-likelihood function:

$$
\ell(\boldsymbol{\theta})=\ell(\boldsymbol{\theta} \mid \boldsymbol{y}, \boldsymbol{x})=\sum_{i=1}^{N} \ln f\left(y_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta}\right)
$$

- Maximum likelihood estimator defined as the solution to the score equations:

$$
S(\boldsymbol{\theta})=\frac{\partial \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\theta}}=0
$$

- Solution:
\triangleright Closed-form in a number of (simple) but often-used settings
\triangleright In contemporary problems numerical solution is needed
- Second derivative (Hessian matrix) used for:
\triangleright Numerical optimization (Newton-Raphson,...)
\triangleright Estimation of standard errors

$$
H(\boldsymbol{\theta})=\frac{\partial^{2} \ell(\boldsymbol{\theta})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^{\prime}}
$$

- Sometimes, MLE simply too cumbersome!

Alternative Principle: Pseudo-likelihood

- Arnold and Strauss (Indian J. Stat. 1991)
- Geys, Molenberghs, and Ryan (JASA 1999)
- Molenberghs and Verbeke (2005)
- Units: clusters, repeated measures, spatial data, microarrays,...

$$
f\left(y_{1}, y_{2}, y_{3}\right) \quad \longleftrightarrow \quad f\left(y_{1} \mid y_{2}, y_{3}\right) \cdot f\left(y_{2} \mid y_{1}, y_{3}\right) \cdot f\left(y_{3} \mid y_{1}, y_{2}\right)
$$

$$
f\left(y_{1}, y_{2}, y_{3}\right) \quad \longleftrightarrow \quad f\left(y_{1}, y_{2}\right) \cdot f\left(y_{1}, y_{3}\right) \cdot f\left(y_{2}, y_{3}\right)
$$

$$
\begin{aligned}
& \qquad f\left(y_{i 1}, \ldots, y_{i n_{i}}\right) \\
& \text { replaced by a product of convenient factors }
\end{aligned}
$$

- The wrong likelihood used
- The right results obtained:
\triangleright Consistent, asymptotically normal estimators
\triangleright Often minor loss of statistical efficiency
\triangleright Often major gain of computational efficiency

Specific Use 1: Pseudo-likelihood for HD Multivariate Longitudinal Data

- Fieuws and Verbeke (Biometrics 2006); Fieuws et al (JRSS-C 2006)
- M sequences of repeated measures
- Example: 44 sequences of hearing variables
- Data for patient i :

$Y_{i 11}$	$Y_{i 12}$	$Y_{i 13}$	\ldots	$Y_{i 1 n_{i}}$
$Y_{i 21}$	$Y_{i 22}$	$Y_{i 23}$	\ldots	$Y_{i 2 n_{i}}$
$Y_{i 31}$	$Y_{i 32}$	$Y_{i 33}$	\ldots	$Y_{i 3 n_{i}}$
\vdots	\vdots	\vdots	\ddots	\vdots
$Y_{i, 44,1}$	$Y_{i, 44,2}$	$Y_{i, 44,3}$	\ldots	$Y_{i, 44, n_{i}}$

- Fit model to each of the $M(M-1) / 2$ pairs
- Use PL to reach valid conclusions

Specific Use 2:
 Split Sample Method: (In)dependent Subsamples

Behavior

- Molenberghs, Verbeke, and Iddi (Stat. \& Prob. Letters 2011)
- Univariate normal: equivalent
- Univariate Bernoulli (probability): equivalent
- Univariate Bernoulli (logit): different estimator, same precision
- Compound symmetry: different estimator, mild precision loss

Specific Use 3:

Per Cluster Size

Fixed Cluster Size \hookleftarrow Variable Cluster Size

- Fixed cluster size: closed-form maximum likelihood estimator: easy
- Variable cluster size:
\triangleright Estimate parameters per cluster size
\triangleright Average these
\triangleright But: Now weighted average needed (several weights possible)

Specific Use 4:
 Surrogate Markers

- Model:

$$
\begin{aligned}
& S_{i j}=\mu_{S i}+\alpha_{i} Z_{i j}+\varepsilon_{S i j} \\
& T_{i j}=\mu_{T i}+\beta_{i} Z_{i j}+\varepsilon_{T i j}
\end{aligned}
$$

- Error structure:
\triangleright Individual level:
* Deviations $\varepsilon_{S i j}$ and $\varepsilon_{T i j}$ are correlated
\triangleright Trial level:
* Treatment effects α_{i} and β_{i} are correlated
* (Information from intercepts $\mu_{S i}$ and $\mu_{T i}$ can be used as well)
- Estimation can be problematic:
\triangleright especially in small studies
\triangleright especialy when studies are of differing sizes
- Solution 1: Use multiple imputation to make all studies equally large
- Solution 2:
\triangleright Analyze trial-by-trial: it can be shown that this is valid
\triangleright Combine results across trials using weighted averages
\triangleright When some (or all) trials are very large: sub-sampling is allowable
- Solution 2-advantages:
\triangleright : Very stable $\longleftarrow \quad$ small trials
\triangleright : Very fast $\longleftarrow \quad$ very large trials
- Van der Elst, Hermans, Verbeke, Kenward, Nassiri, and Molenberghs (CSDA 2016)

Statistics

Applied Surrogate Endpoint Evaluation Methods with SAS and R provides an overview of contemporary meta-analytic and information-theoretic methodology to evaluate candidate surrogate endpoints from clinical trials and beyond. The book strongly focuses on user-friendly software in both SAS and R for a variety of outcome types.

The book is aimed at researchers and practitioners who want to study and apply methodology for surrogate endpoint and biomarker evaluation Methodology is described while keeping mathematical detail to a minimum. Throughout the book, a suite of generic case studies is used to illustrate the concepts and methodology. A large part of the book is devoted to the description and illustration of SAS macros, R language libraries, and R Shiny Apps. The software tools can be downloaded from the authors' web pages Methodology, applications, and software encompass continuous, binary, categorical, time-to-event, and longitudinal outcomes.

The University of Hasselt and KU Leuven-based editor team, supplemented by a fine group of chapter authors, has over twenty years of experience in the field of surrogate marker evaluation in clinical and other studies. The book is rooted at the same time in methodological research, regular and short courses taught on the topic, as well as in vast experience with the design and conduct of clinical trials. The team's prolific contributions have led to numerous papers, chapters, and books on this topic. This book was written in a coherent fashion, with common notation, conventions, and case studies throughout all chapters.

Applied Surrogate Endpoint Evaluation Methods with SAS and R

Ariel Alonso
Theophile Bigirumurame
Tomasz Burzykowski
Marc Buyse Geert Molenberghs

Leacky Muchene Nolen Joy Perualila Ziv Shkedy Wim Van der Elst

Surrogate Markers and Beyond: Trial-by-trial estimator

- Poveda, Molenberghs, Verbeke, Alonso (J. Biopharmaceutical Stat. 2019)
- Very general multivariate linear mixed model can be used
- Closed-form estimators per trial
- Weighting to combine across trials
- Involves considerable matrix algebra - but computationally feasible
- Simulations: $\mathbf{1 0}$ to $\mathbf{1 0 0}$ times faster \& very efficient

Meta-analysis in Schizophrenia

- 2128 patients treated by 198 psychiatrists
- From 6 to 52 patients per psychiatrist
- Psychiatrists with 1 or 2 patients excluded (1392 patients remaining)
- Three outcomes:
\triangleright PANSS: Positive and Negative Syndrome Scale
\triangleright BPRS: Brief Psychiatric Rating Scale
\triangleright CGI: Clinician's Global Impression

Parameter Estimates for a Joint Model

Trial-by-trial

Parameter	Estimate	Std. error		Estimate	Std. error
$\beta_{0, \mathrm{BPRS}}$	-8.15	0.863		-7.85	0.519
$\beta_{1, \mathrm{BPRS}}$	-1.49	0.408		-1.26	0.332
$\beta_{0, \mathrm{CGI}}$	3.28	0.097		3.32	0.054
$\beta_{1, \mathrm{CGI}}$	-0.16	0.046		-0.12	0.038
$\beta_{0, \text { PANSS }}$	-14.59	1.53		-13.87	0.911
$\beta_{1, \text { PANSS }}$	-2.74	0.707		-2.41	0.582

Specific Use 5: Leuven Diabetes Study

- Ivanova, Molenberghs, and Verbeke (SMMR 2017)
- 120 general practitioners - 2495 patients
- Outcomes
\triangleright LDL: low-density lipoprotein cholestrol
\triangleright HbA1C: glycosylated hemoglobin
\triangleright SBP: systolic blood pressure
- Ordinal targets
- Multiple outcomes \& measured repeatedly \& ordinal
\Longrightarrow joint modeling

Leuven Diabetes Study: Targets

LDL targets		\# Observations	
		T_{0}	T_{1}
1:	$<100 \mathrm{mg} / \mathrm{dl}$	819	1106
2 :	$\geq 100 \mathrm{mg} / \mathrm{dl}$ \& $<115 \mathrm{mg} / \mathrm{dl}$	381	312
3:	$\geq 115 \mathrm{mg} / \mathrm{dl}$ \& < $130 \mathrm{mg} / \mathrm{dl}$	287	220
4:	$\geq 130 \mathrm{mg} / \mathrm{dl}$	485	250
missing		287	371
HbA1C targets		T_{0}	T_{1}
1 :	< 7 \%	1201	1357
2 :	$\geq 7 \%$ \& $<8 \%$	604	474
3:	$\geq 8 \%$	413	176
missing		41	252
SBP targets		T_{0}	T_{1}
1:	$\leq 130 \mathrm{mmHg}$	1103	1152
2:	$>130 \mathrm{mmHg} \& \leq 140 \mathrm{mmHg}$	551	469
3:	$>140 \mathrm{mmHg} \& \leq 160 \mathrm{mmHg}$	466	324
4:	$>160 \mathrm{mmHg}$	136	75
missing		3	239

Method	3 sequences	Partitioning	CPU
$1 \equiv \mathrm{ML}$	(123)		7'13'
$2 \equiv \mathrm{PLp}$	(12)(13)(23)		1'23'
$3 \equiv \mathrm{PLs}$	(123)		1'21'
$4 \equiv$ PLps	(12)(13)(23)		0'20'

Some Parameter Estimates (LDL)

Effect	$\mathbf{1} \equiv \mathbf{M L}$	$\mathbf{2} \equiv \mathbf{P L p}$	$\mathbf{3} \equiv \mathbf{P L s}$	$\mathbf{4} \equiv \mathbf{P L p s}$
intercept 1	$-1.076(0.108)$	$-1.073(0.107)$	$-1.063(0.109)$	$-1.061(0.110)$
intercept 2	$0.155(0.105)$	$1.157(0.106)$	$0.183(0.107)$	$0.185(0.109)$
intercept 3	$1.257(0.110)$	$1.258(0.115)$	$1.291(0.112)$	$1.292(0.118)$
time	$1.025(0.076)$	$1.025(0.071)$	$1.025(0.077)$	$1.025(0.072)$
diabetes duration $T_{0} / 10$	$0.213(0.088)$	$0.216(0.090)$	$0.198(0.090)$	$0.201(0.091)$
gender	$0.497(0.110)$	$0.497(0.110)$	$0.497(0.111)$	$0.497(0.112)$
insuline	$0.853(0.150)$	$0.829(0.153)$	$0.877(0.153)$	$0.852(0.156)$
random int. standard dev.	$1.852(0.089)$	$1.849(0.085)$	$1.853(0.090)$	$1.849(0.087)$

CPU Gain / Efficiency Loss

- Subsamples can be analyzed in parallel
- Base model above, with numerical integration over $Q=3$ quadrature points:

$$
7^{\prime} 13^{\prime \prime} \longrightarrow 0^{\prime} 20^{\prime \prime}
$$

- More demanding integration: $Q=15$

- Statistical efficiency: almost always $\geq 95 \%$
- For PLps occasionally 85% - 87%

Conclusions

- Broad framework based on:
\triangleright pseudo-likelihood
\triangleright pairwise modeling
\triangleright split sample
- Statistically valid procedures: consistent, asymptotically normal
- Can lead to tremendous CPU gain
- Statistical efficiency loss mostly acceptable

Incomplete Data

Setting the Scene Using Examples

\triangleright Orthodontic growth data
\triangleright Age-related macular degeneration trial
\triangleright Notation
\triangleright Taxonomy

Growth Data

- Taken from Potthoff and Roy, Biometrika (1964)
- Research question:

Is dental growth related to gender ?

- The distance from the center of the pituitary to the maxillary fissure was recorded at ages $8,10,12$, and 14 , for 11 girls and 16 boys
- Individual profiles:
\triangleright Much variability between girls / boys
\triangleright Considerable variability within girls / boys
\triangleright Fixed number of measurements per subject
\triangleright Measurements taken at fixed time points

Orthodontic Growth Data
Profiles and Means

Age-related Macular Degeneration Trial

- Pharmacological Therapy for Macular Degeneration Study Group (1997)
- An occular pressure disease which makes patients progressively lose vision
- 240 patients enrolled in a multi-center trial (190 completers)
- Treatment: Interferon- α (6 million units) versus placebo
- Visits: baseline and follow-up at 4, 12, 24, and 52 weeks
- Continuous outcome: visual acuity: \# letters correctly read on a vision chart
- Binary outcome: visual acuity versus baseline ≥ 0 or ≤ 0
- Missingness:

Measurement occasion					
4 wks	12 wks	24 wks	52 wks	Number	$\%$
Completers					
O	O	O	O	188	78.33
O	O	O	M		
O	O	M	M	24	10.00
O	M	M	M	6	3.33
M	M	M	M	6	2.50
	$\mathrm{Non-monotone}$	missingness			
O	O	M	O	4	1.67
O	M	M	O	1	0.42
M	O	O	O	2	0.83
M	O	M	M	1	0.42

CRF	TRT	VISUAL0	VISUAL4	VISUAL12	VISUAL24	VISUAL52	lesion
1002	4	59	55	45	.	.	3
1003	4	65	70	65	65	55	1
1006	1	40	40	37	17	.	4
1007	1	67	64	64	64	68	2
1010	4	70	1
1110	4	59	53	52	53	42	3
1111	1	64	68	74	72	65	1
1112	1	39	37	43	37	37	3
1115	4	59	58	49	54	58	2
1803	1	49	51	71	71	.	1
1805	4	58	50		.	-	1

Notation

- Subject i at occasion (time) $j=1, \ldots, n_{i}$
- Measurement $Y_{i j}$
- Missingness indicator $\quad R_{i j}= \begin{cases}1 & \text { if } Y_{i j} \text { is observed, } \\ 0 & \text { otherwise. }\end{cases}$
- Group $Y_{i j}$ into a vector $\quad \boldsymbol{Y}_{i}=\left(Y_{i 1}, \ldots, Y_{i n_{i}}\right)^{\prime}=\left(\boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m}\right)$

$$
\begin{cases}\boldsymbol{Y}_{i}^{o} & \text { contains } Y_{i j} \text { for which } R_{i j}=1 \\ \boldsymbol{Y}_{i}^{m} & \text { contains } Y_{i j} \text { for which } R_{i j}=0\end{cases}
$$

- Group $R_{i j}$ into a vector $\boldsymbol{R}_{i}=\left(R_{i 1}, \ldots, R_{i n_{i}}\right)^{\prime}$
- D_{i} : time of dropout: $D_{i}=1+\sum_{j=1}^{n_{i}} R_{i j}$

Notation: Example

CRF	TRT	VISUAL0	VISUAL4	VISUAL12	VISUAL24	VISUAL52
1002	4	59	55	45	.	.
R-vector			1	1	0	0
D-value					3	
1003	4	65	70	65	65	55
R-vector			1	1	1	1
D-value						--> 5
1006	1	40	40	37	17	-
R-vector			1	1	1	0
D-value						4

Players On The Field

Quantity	Notation
Covariates	\boldsymbol{X}_{i}
Outcomes	\boldsymbol{Y}_{i}
Observed part of the outcomes	\boldsymbol{Y}_{i}^{o}
Missing part of the outcomes	\boldsymbol{Y}_{i}^{m}
Missingness indicators	\boldsymbol{R}_{i}

R_{i} : The Party Crasher

- We are interested in the relationship between \boldsymbol{X}_{i} and \boldsymbol{Y}_{i}
- We are interested in how $\boldsymbol{X}_{i}=$ vaccination status influences $\boldsymbol{Y}_{i}=$ infection
- But... \boldsymbol{R}_{i} (missingness) is the uninvited guest

\[

\]

The Model We Like and The Model We Need

- We would love to build a model for how \boldsymbol{X}_{i} influences \boldsymbol{Y}_{i}

$$
f\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}\right)
$$

- But because of the nuisance \boldsymbol{R}_{i}, we need:

$$
f\left(\boldsymbol{Y}_{i}, \boldsymbol{R}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}, \boldsymbol{\psi}\right)
$$

We tend to break it up:

Model	Notation
Model of scientific interest	$f\left(\boldsymbol{Y}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}\right)$
Missingness model	$f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$ $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

The Missingness Model

$$
f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)
$$

Missing Completely at Random (MCAR) $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

\triangleright Missingness depends on covariates only
\triangleright Missingness of seizures can depend on age, gender, treatment, but not on infection status itself
\triangleright Missingness on visual acuity can depend on treatment arm and on lesion type, but not on visual acuity itself
\triangleright Simplest mechanism
\triangleright But. . . usually too simple to be clinically or epidemiologically plausible

Missing at Random (MAR) $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

\triangleright Missingness depends on covariates and on observed outcomes
\triangleright Missingness on seizures now can depend on covariates and on earlier seizures variables
\triangleright Given that information, it does not depend on today's, possibly missing seizures
\triangleright Much more plausible than MCAR
\triangleright Common misunderstanding is that MAR implies that everybody has the same probability of being missing at some point - NO! But it is permitted to depend only on observed information
\triangleright Under MAR, we have all the data in hand to build models, for outcomes and for the missingness mechanism

Missing Not at Random (MNAR) $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

\triangleright The full menu
\triangleright Missingness can depend on covariates, and on observed outcomes, and on missing outcomes
\triangleright Missingness in seizures today can depend on age, gender, treatment, and on earlier seizures, and on today's, potentially missing seizures
\triangleright Major problem: "We do not have the missing outcomes"
\triangleright Major problem: "We do not have the missing infection status"
\triangleright This also means that MAR and MNAR cannot be distinguished from each other based on data alone!

Where Does That Leave Us Towards Analyzing Incomplete Data?

Missing Completely at Random (MCAR) $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

\triangleright Too simplistic $\quad \longrightarrow \quad$ forget about it
\triangleright Should it apply anyway, then an MAR approach would do the job anyhow
Missing at Random (MAR) $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$
\triangleright Very appealing place for our primary analysis:

* Quite general mechanism
* Yet, we do not need to bother with unobserved data
* Likelihood and Bayesian approaches come with extra appeal: ignorability

Missing Not at Random (MNAR) $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$
\triangleright MNAR can never be ruled out
$\triangleright I t$ is the playground of sensitivity analysis

Direct Likelihood/Bayesian Inference: Ignorability

- Under MAR, it looks like we have to deal with two models:

The model of interest $\quad f\left(\boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}\right)$
The missingness model $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

- But when we use maximum likelihood or Bayesian estimation, there is more good news:

$$
\text { MAR : } f\left(\boldsymbol{Y}_{i}^{o} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}\right) f\left(\boldsymbol{R}_{i} \mid \mathbf{Y}_{i}^{o}, \boldsymbol{X}_{i}, \psi\right)
$$

- There is no need to model the missing data mechanism
- Only the observed outcomes and the covariates need to be modeled - i.e., the data that we happen to have
- Just make sure that the software can handle unbalanced data because not everyone has the same number of measurements
- Where would we use maximum likelihood or Bayes?
\triangleright Linear mixed models
\triangleright Generalized linear mixed models
- Where would we not use maximum likelihood or Bayes?
\triangleright Generalized estimating equations \longleftarrow non-ignorable under MAR!

Taxonomy

- Missingness pattern: complete - monotone - non-monotone
- Dropout pattern: complete — dropout — intermittent
- Model framework: SEM - PMM — SPM
- Missingness mechanism: MCAR - MAR - MNAR
- Ignorability: ignorable - non-ignorable
- Inference paradigm: frequentist - likelihood - Bayes

A Word About Modeling Frameworks

- We considered selection models: (but did not say that yet)

The data model of interest $\quad f\left(\boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}\right)$
The missingness model $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m}, \boldsymbol{X}_{i}, \boldsymbol{\psi}\right)$

- An alternative framework: pattern-mixture models:

The data model per pattern $\quad f\left(\boldsymbol{Y}_{i}^{o}, \boldsymbol{Y}_{i}^{m} \mid \boldsymbol{R}_{i} \boldsymbol{X}_{i}, \boldsymbol{\theta}^{*}\right)$
The probability to belong to a pattern $\quad f\left(\boldsymbol{R}_{i} \mid \boldsymbol{X}_{i}, \psi^{*}\right)$

Frameworks and Their Methods

MCAR/simple	$\longrightarrow \mathrm{MAR}$	
CC?		
LOCF?	direct likelihood!	joint model?
single imputation?	direct Bayesian!	sensitivity analysis!
\vdots	multiple imputation (MI)!	
	IPW \supset W-GEE!	
	d.I. + IPW $=$ double robustness! (consensus)	

Original, Complete Orthodontic Growth Data

	Mean	Covar	\# par
1	unstructured	unstructured	18
2	\neq slopes	unstructured	14
3	$=$ slopes	unstructured	13
$\mathbf{7}$	\neq slopes	CS	$\mathbf{6}$

Growth Data, Model 1
Unstructured Means, Unstructured Covarianc

Growth Data, Model 3
Parallel Lines, Unstructured Covariance

Growth Data, Model 2 Two Lines, Unstructured Covariance

Growth Data, Model 7
Two Lines, Compound Symmetry

Incomplete Growth Data: Simple Methods

Method	Model	Mean	Covar	\# par
Complete case	$7 a$	= slopes	CS	5
LOCF	2 a	quadratic	unstructured	16
Unconditional mean	7 a	= slopes	CS	5
Conditional mean	1	unstructured	unstructured	18

distorting

Incomplete Growth Data: Direct Likelihood

Mean
7 Covar \# par
7 slopes $\operatorname{CS~} 6$

Growth Data, Model 1
Missing At Random
Unstructured Means, Unstructured Covariance

Growth Data, Model 3
Missing At Random
Parallel Lines, Unstructured Covariance

Growth Data, Model 2
Missing At Random
Two Lines, Unstructured Covariance

Growth Data, Model 7
Missing At Random
Two Lines, Compound Symmetry

Analysis of the ARMD Trial

- Model for continuous outcomes:

$$
Y_{i j}=\beta_{j 1}+\beta_{j 2} T_{i}+\varepsilon_{i j}
$$

with:
$\triangleright T_{i}=0$ for placebo and $T_{i}=1$ for interferon- α
$\triangleright t_{j}(j=1, \ldots, 4)$ refers to the four follow-up measurements
$\triangleright \beta_{12}, \ldots, \beta_{42}$ are the treatment effects at the four follow-up times
\triangleright unstructured variance-covariance matrix

- Turning to the dichotomous outcome...
- Marginal mean for GEE:

$$
\operatorname{logit}\left[P\left(Y_{i j}=1 \mid T_{i}, t_{j}\right)\right]=\beta_{j 1}+\beta_{j 2} T_{i}
$$

- Model for GLMM with random interecept:

$$
\operatorname{logit}\left[P\left(Y_{i j}=1 \mid T_{i}, t_{j}, b_{i}\right)\right]=\beta_{j 1}+b_{i}+\beta_{j 2} T_{i}
$$

with

$$
\triangleright b_{i} \sim N\left(0, \tau^{2}\right)
$$

Effect	Parameter	CC	LOCF	direct lik.
Parameter estimates (standard errors) for linear mixed model				
Intercept 4	β_{11}	-3.24(0.77)	-3.48(0.77)	-3.48(0.77)
Intercept 12	β_{21}	-4.66(1.14)	$-5.72(1.09)$	-5.85(1.11)
Intercept 24	β_{31}	-8.33(1.39)	-8.34(1.30)	-9.05(1.36)
Intercept 52	β_{41}	-15.13(1.73)	-14.16(1.53)	-16.21(1.67)
Treatm. eff. 4	β_{12}	2.32(1.05)	2.20(1.08)	2.20(1.08)
Treatm. eff. 12	β_{22}	$2.35(1.55)$	3.38(1.53)	3.51 (1.55)
Treatm. eff. 24	β_{32}	2.73(1.88)	2.41(1.83)	3.03(1.89)
Treatm. eff. 52	β_{42}	4.17(2.35)	3.43(2.15)	4.86(2.31)
p-values				
Treatm. eff. 4	β_{12}	0.0282	0.0432	0.0435
Treatm. eff. 12	β_{22}	0.1312	0.0287	0.0246
Treatm. eff. 24	β_{32}	0.1491	0.1891	0.1096
Treatm. eff. 52	β_{42}	0.0772	0.1119	0.0366
Treatm. eff. (overall)		0.1914	0.1699	0.1234

Effect Parameter CC LOCF direct lik.

Binary outcome: GLMM

Int.4	β_{11}	$-1.73(0.42)-1.63(0.39)-1.50(0.36)$	
Int.12	β_{21}	$-1.53(0.41)-1.80(0.39)-1.73(0.37)$	
Int.24	β_{31}	$-1.93(0.43)-1.96(0.40)-1.83(0.39)$	
Int.52	β_{41}	$-2.74(0.48)-2.76(0.44)-2.85(0.47)$	
Trt.4	β_{12}	$0.64(0.54)$	$0.38(0.52)$
$0.34(0.48)$			
Trt.12	β_{22}	$0.81(0.53)$	$0.98(0.52)$
$1.00(0.49)$			
Trt.24	β_{32}	$0.77(0.55)$	$0.74(0.52)$
$0.69(0.50)$			
Trt.52	β_{42}	$0.60(0.59)$	$0.57(0.56)$
$0.64(0.58)$			
R.I. s.d.	τ	$2.19(0.27)$	$2.47(0.27)$
R.I. $20(0.25)$			
R.I. var.	τ^{2}	$4.80(1.17)$	$6.08(1.32)$

Multiple Imputation

- Multiple imputation ($M=5$ imputations):

Use of MI in Practice

- Many analyses of the same incomplete set of data
- A combination of missing outcomes and missing covariates
- As an alternative to WGEE: MI can be combined with classical GEE
- Schematically:

Imputation Task: Function to generate imputations

Analysis Task:
Your favorite model function
\downarrow
Inference Task: Function for Rubin's combination rules

MI Analysis of the ARMD Trial

- $M=10$ imputations
- GEE:

$$
\operatorname{logit}\left[P\left(Y_{i j}=1 \mid T_{i}, t_{j}\right)\right]=\beta_{j 1}+\beta_{j 2} T_{i}
$$

- GLMM:

$$
\operatorname{logit}\left[P\left(Y_{i j}=1 \mid T_{i}, t_{j}, b_{i}\right)\right]=\beta_{j 1}+b_{i}+\beta_{j 2} T_{i}, \quad b_{i} \sim N\left(0, \tau^{2}\right)
$$

- $T_{i}=0$ for placebo and $T_{i}=1$ for interferon- α
- $t_{j}(j=1, \ldots, 4)$ refers to the four follow-up measurements
- Imputation based on the continuous outcome
- Results:

Effect	Par.	GEE	GLMM
Int.4	β_{11}	$-0.84(0.20)$	$-1.46(0.36)$
Int.12	β_{21}	$-1.02(0.22)$	$-1.75(0.38)$
Int.24	β_{31}	$-1.07(0.23)$	$-1.83(0.38)$
Int.52	β_{41}	$-1.61(0.27)$	$-2.69(0.45)$
Trt.4	β_{12}	$0.21(0.28)$	$0.32(0.48)$
Trt.12	β_{22}	$0.60(0.29)$	$0.99(0.49)$
Trt.24	β_{32}	$0.43(0.30)$	$0.67(0.51)$
Trt.52	β_{42}	$0.37(0.35)$	$0.52(0.56)$
R.I. s.d.	τ		$2.20(0.26)$
R.I. var.	τ^{2}		$4.85(1.13)$

When to Use Multiple Imputation?

- With missing outcomes (Y^{\prime} s) only, under MAR, and using likelihood/Bayes, ignorable likelihood/Bayes and MI are equivalent
- In that case, ignorable likelihood/Bayes is simpler
- But there are a number of settings where MI would be preferred:
\triangleright When there are incomplete covariates X as well
\triangleright When several researchers want to analyze the same incomplete set of data: MI will take care of the missingness for them all, in the same way
\triangleright When using a non-likelihood/Bayes method, such as GEE * MI-GEE generally tends to be more precise than WGEE
\triangleright When a simple analysis is envisaged: e.g., a t test at a given time point in the study: direct likelihood would still force us to include all time points into the analysis. With MI, this 'multivariate aspect' is already taken care of at imputation time.
\triangleright For sensitivity analysis

Overview

\(\left.\begin{array}{|l|l|l|}\hline MCAR/simple \& CC \& biased

inefficient

MoC simpler than MAR methods\end{array}\right]\)| MAR | direct likelihood
 direct Bayes
 weighted GEE
 MI | Gasy to conduct
 Gassian \& non-Gaussian |
| :--- | :--- | :--- |
| MNAR | variety of methods | strong, untestable assumptions
 most useful in sensitivity analysis |

