Composite endpoints including patient relevant endpoints (Quality of Life)

Interuniversity Institute for Biostatistics and statistical Bioinformatics

6 May 2022

Johan Verbeeck

johan.verbeeck@uhasselt.be

Data Science Institute/I-Biostat

UHasselt - Belgium

Content

- Composite endpoints in clinical trials
- Generalized Pairwise Comparisons (GPC)
 - Effect measure
 - Characteristics
 - Inference for small samples
- Example: Epidermolysis bullosa
- Conclusions

Composite endpoints in clinical trials

Multivariate endpoints

 International Conference Council on Harmonisation recommends to select a single meaningful endpoint.

International Conference on Harmonisation E9 Expert Working Group (1998) What is your experience to define a single meaningful endpoint for the study of a disease?

EJP RD

Multivariate endpoints

- It is **not always easy to choose** or define a meaningful single endpoint
- A single endpoint is **often not sufficient** to reflect the full clinical benefit of a treatment in multifaceted diseases
- Combination of several clinical meaningful endpoints

Combination of endpoints of different data type in small sample trials

International Conference on Harmonisation E9 Expert Working Group (1998)

Multivariate endpoints methodologies

Combining endpoints on:

• subject level:

- Reduce per subject multivariate to univariate endpoint: f.e. clinical indices, composite endpoints (time to first event)
 Cox proportional hazard model¹ and its extensions (Anderson-Gill²,...)
 longrank test and its extension (weighted composite endpoint³)
- Joint frailty models⁴,...

are limited:

- In the number and type of endpoints that can be combined
- Poor small sample properties

- 1. Cox (1972)
- 2. Andersen and Gill (1982)
- 3. Armstrong et al. (2011)
- 4. Rondeau et al. (2007)

What is your preferred method to handle multiple endpoints?

Multivariate endpoints methodologies

Combining endpoints on:

• subject level:

- Reduce per subject multivariate to univariate endpoint: f.e. clinical indices, composite endpoints
- joint models
- test statistics level: Combine univariate z-or t-statistics
 - combine t-statistics¹: accounts for correlation, but only allows for continuous endpoints
 - average z-scores²: allows all types of endpoints, but ignores correlation
- level of p-values: Combine p-values of endpoint corresponding test
 f.e. Lancaster³, Dai⁴ procedures, multiple testing procedures⁵: correlation?

- 1. O'Brien (1984) 4. [
- 2. Sun et al. (2012)
- 3. Lancaster (1961)
- 4. Dai et al. (2014)
- 5. Dmitrienko et al. (2010)

Limitations of multivariate methods

- Ignore the correlation between the endpoints
- Limited to one type of endpoints
- Treats every endpoint as equally important
- No straightforward effect sizes measure to quantify the effect of the treatment is available
- Small sample properties

What are the limitations you encounter with multiple endpoint analyses?

EJP RD

Novel non-parametric methods

• Based on ranks:

Global rank¹, Desirability of Outcome Ranking (DOOR)²; unambiguous ranks are not possible for multivariate censored outcomes

• Extension of Mann-Whitney test :

Generalized Pairwise Comparisons³ (or win statistics⁴)

- 1. Felker and Maisel (2010)
- 2. Evans et al. (2015)
- 3. Buyse (2010)
- 4. Dong et al. (2021)

Generalized Pairwise Comparisons (GPC)

Family of GPC

Generalized Pairwise Comparison (GPC) methodology

Finkelstein et al. (1999) Buyse (2010) Pocock et al (2012)

GPC statistics

Net (treatment) benefit =
$$\frac{N_X - N_Y}{nm} \leftarrow Amount of pairs$$

Number of wins for the control subjects

Number of wins for the treatment subjects

Net benefit (Δ): values between [-1, 1] $\Delta = P(X>Y)-P(X<Y)$

= U-statistic

Related to probabilistic index, relative effect,... (θ): $\theta = P(X>Y)+1/2 P(X=Y)$

$$\Delta = 2\theta - 1$$

GPC statistics

Pocock et al. (2012)

GPC statistics

Non-prioritized GPC

 $\Delta = \frac{n_x - n_y}{nmk}$ with *k* the number of outcomes

O'Brien (1984) Ramchandani et al. (2016) Verbeeck et al. (2019)

Flexible framework of GPC

• Prioritized/non-prioritized^{1,2}

• Matched/unmatched pairwise comparisons³

• Threshold of clinical relevance $(\tau)^4$

- 1. Ramchandani et al. (2016)
- 2. Verbeeck et al. (2019)
- 3. Pocock et al. (2012)
- 4. Buyse (2010)

Characteristics of GPC

- Univariate uncensored: unbiased and efficient in clinical trials scenarios¹
- Univariate censored: drop-out bias can be corrected²
- Multivariate: correlation between outcomes affects prioritized and nonprioritized GPC differently³

- 1. Verbeeck et al. (2021)
- 2. Deltuvaite-Thomas et al. Submitted
- 3. Verbeeck et al. (2019)

Inference with GPC

Net benefit	Win ratio	Win odds
Re-sampling permutation test	Re-sampling bootstrap test	Rank-based test
Asymptotic Normal U-statistic	Asymptotic Lognormal U-statistic	

Theoretically shown that GPC test with net benefit, win ratio and win odds are approximately equal

Small sample behavior?

Small sample inference with GPC

- Extend **exact permutation test** of Gehan and Gilbert to win ratio, to bootstrap test and non-prioritized GPC.
- The null distribution of the GPC statistic in every possible permutation (bootstrap) sample is standard normally distributed.

Small sample inference with GPC

EJP RD

Histogram with fitted normal density curve (left) and normal Q-Q plot (right) of the exact permutation distribution of the net benefit (top row) and the logarithm of the win ratio (bottom row) for a simulation of **five subjects per arm**.

Verbeeck et al. (2020)

Small sample inference with GPC

Type I err	or				
N	U-Statistic Ramchandani	U-Statistic Dong	U-statistic Bebu	Exact Permutation	Exact Bootstrap
20	0.0210	0.0099	0.1175	0.0512	0.0792
50	0.0390	0.0347	0.0717	0.0483	0.0599
100	0.0457	0.0436	0.0603	0.0507	0.0556
200	0.0486	0.0477	0.0548	0.0502	0.0522

Verbeeck et al. (2020)

GPC corrects all limitations of multivariate methods

- Captures correlation between the endpoints
- Allows any number and type of endpoints
- Allows priority ranking of endpoints by severity
- Straightforward effect sizes measure to quantify the effect of the treatment

• Good small sample properties

GPC method accepted by regulatory authorities

- Amyloid cardiomyopathy (ATTR-CM)
- Prevalence <1/100,000 in EU
- Accumulation of misfolded transthyretin amyloid fibrils in the myocardium, leading to restrictive cardiomyopathy and heart failure.
- Drug approval Vyndaqel (tafamidis) by FDA (May 2019) and EMA (Feb 2020) based on ATTR-ACT trial:
 - 441 patients
 - **Primary endpoint: GPC** with all-cause mortality, followed by cardiovascular-related hospitalizations

Example: Epidermolysis bullosa

European Joint Programme on Rare Diseases:

"Demonstration projects on existing statistical methodologies to improve RD clinical trials"

EBStatMax project (Salzburg, Hasselt, Uppsala)

EB trial design

- Rare skin disease: Epidermolysis bullosa simplex
- Formation of blisters under low mechanical stress
- 15 pediatric subjects (with missing data) treated with placebo and diacerin cream in a longitudinal cross-over trial

Inconclusive results primary endpoint analysis

• <u>Primary endpoint</u>: >40% reduction in blister count compared to baseline (binary outcome) at week 4; Barnard test (~Fisher exact test 2x2 table)

But.....

- Barnard test ignores:
 - Cross-over design
 - Longitudinal data: blister count measurement: 2, 4, weeks and 3 months
 - Patient relevant outcomes: QoL: baseline and post-treatment visit 4 weeks

• <u>Question</u>:

"Is there a powerful test, accounting for the cross-over design and longitudinal information?"

Wide array of tests are being evaluated for blister outcome

- <u>Non-parametric</u>:
 - Rank-based marginal model for longitudinal data (nparLD)
 - GPC
- <u>Semi-parametric</u>
 - GEE-type model with small sample corrections
- Parametric
 - Model averaging

GEE-type model performs best for cross-over longitudinal measures

	One-sided			Two-sided		
	Samples	Type I	Power	Samples	Type I	Power
Barnard period 1	5000/5000	0.035	0.34	3971/4620	0.029	0.17
Barnard period 2	5000/5000	0.032	0.25	4675/4995	0.041	0.08
Marginal model period 1				4882/4966	0.069	0.15
Marginal model period 2				4999/4997	0.066	0.14
Matched univariate GPC	5000/5000	0.055	0.13	5000/5000	0.047	0.06
Unmatched univariate GPC	5000/5000	0.058	0.18	5000/5000	0.052	0.11
Matched prioritized GPC	5000/5000	0.016	0.05	5000/5000	0.077	0.03
Unmatched prioritized GPC	5000/5000	0.055	0.18	5000/5000	0.044	0.10
Unmatched non-prioritized GPC	5000/5000	0.058	0.21	5000/5000	0.059	0.13
GEE - no correction				4878	0.083	/
GEE - Kauermann & Carroll				4878/4679	0.071	0.54
GEE - Fay & Graubard				4878/4679	0.069	0.54
GEE - Mancl & DeRouen				4878/4679	0.054	0.55

$$\operatorname{logit}(\pi_{ist}) = \beta_0 + \beta_1 G_{is} + \beta_2 P_i + \sum \beta_j T_{ist},$$

Diacerin improves blister outcome

The odds ratio of a 40% reduction in the number of blisters between diacerein and placebo is 5.73 (95%CI: 1.50–21.91; *p-value* = 0.0125), which is mainly due to the effect in the first period.

The odds ratio of a 40% reduction in the number of blisters in period 1 versus period 2 is 4.34 (95% CI: 1.12–16.84; *p-value* =0.0350).

Multivariate outcome with patient reported outcome (QoL) Never 2% Sometimes 25%

Often 18% Always 55%

Multivariate outcome with patient reported outcome (QoL)

QoL questionnaire on hindrance daily activities:

- 8 questions
- Each scored:
 - 0 (no hindrance)-3 (very much hindrance)
- Maximum of 24 points

Since QoL is measured only at baseline and post-treatment visit, we ignore the longitudinal profile of the blister outcome

Multivariate outcome with patient reported outcome (QoL)

• <u>Non-parametric</u>:

• Rank-based marginal model for longitudinal data (nparLD)

• GPC

- <u>Semi-parametric</u>
 - GEE-type model with small sample corrections
- <u>Parametric</u>
 - Model averaging

Variants of GPC

- (Unmatched) Prioritized GPC:
 - 40% blister reduction
 - QoL difference to baseline
- (Unmatched) Non-prioritized GPC
- Matched prioritized GPC

Matched GPC inference

• <u>Conditional sign test</u>:

$$Z_m = \frac{N_X - N_Y}{\sqrt{N_X + N_Y}} \sim N(0, 1)$$

Uniformly most powerful test

- But:
 - requires at least 15-20 (paired) subjects
 - ignores number of ties
 - Konietschke and Pauly (2012) motivate that under certain conditions (applicable for the exact permutation test) the paired design can be ignored.

Simulation set-up

- Permute EB trial blister count and QoL over treatment arms 5000 times
- Add a random Poisson(λ =3) treatment effect for both the placebo blister count and QoL for the placebo arm
- Dichotomized blister count (40% reduction) and standardized difference with baseline $\left(\frac{y_0 y_4}{y_0}\right)$

Matched GPC: often uncontrolled type I error

	Type I error	Power
	Dichotomiz	ed blister outcome
unmatched blister	0.0692 (0.0216)	0.5904 (0.7202)
unmatched QoL	0.0514 (0.0486)	0.8642 (0.9302)
unmatched prioritized	0.0514 (0.0510)	0.9594 (0.9812)
unmatched non-prioritized	0.0490 (0.0524)	0.9886 (0.9716)
matched blister	0.0348 (0.0544)	0.4751 (0.0002)
matched QoL	0.0422 (0.0550)	0.7044 (0.0000)
matched prioritized	0 0260 (0 0258)	0 5824 (0 8210)
matched phontized	0.0200 (0.0230)	0.3024(0.0210)
matched phontized	Standardized dif	ference blister outcome
unmatched blister	Standardized dif 0.0438 (0.0450)	ference blister outcome 0.5138 (0.6650)
unmatched blister unmatched QoL	Standardized dif 0.0438 (0.0450) 0.0490 (0.0528)	ference blister outcome 0.5138 (0.6650) 0.7940 (0.8888)
unmatched blister unmatched QoL unmatched prioritized	Standardized dif 0.0438 (0.0450) 0.0490 (0.0528) 0.0442 (0.0458)	ference blister outcome 0.5138 (0.6650) 0.7940 (0.8888) 0.5402 (0.6852)
unmatched blister unmatched QoL unmatched prioritized unmatched non-prioritized	Standardized dif 0.0438 (0.0450) 0.0490 (0.0528) 0.0442 (0.0458) 0.0510 (0.0502)	ference blister outcome 0.5138 (0.6650) 0.7940 (0.8888) 0.5402 (0.6852) 0.9250 (0.9670)
unmatched blister unmatched QoL unmatched prioritized unmatched non-prioritized matched blister	0.0200 (0.0230) Standardized dif 0.0438 (0.0450) 0.0490 (0.0528) 0.0442 (0.0458) 0.0510 (0.0502) 0.0472 (0.0654)	ference blister outcome 0.5138 (0.6650) 0.7940 (0.8888) 0.5402 (0.6852) 0.9250 (0.9670) 0.2784 (0.0004)
unmatched blister unmatched QoL unmatched prioritized unmatched non-prioritized matched blister matched QoL	0.0200 (0.0230) Standardized dif 0.0438 (0.0450) 0.0490 (0.0528) 0.0442 (0.0458) 0.0510 (0.0502) 0.0472 (0.0654) 0.0414 (0.0524)	ference blister outcome 0.5138 (0.6650) 0.7940 (0.8888) 0.5402 (0.6852) 0.9250 (0.9670) 0.2784 (0.0004) 0.6536 (0.0000)

Two-sided (one-sided) type I error and power

EJP RD

N=13

N=12

Adding QoL to blister increases power,...

	Type I error	Power	
	Dichotomize	ed blister outcome	
unmatched blister	0.0692 (0.0216)	0.5904 (0.7202)	
unmatched QoL	0.0514 (0.0486)	0.8642 (0.9302)	
unmatched prioritized	0.0514 (0.0510)	0.9594 (0.9812)	N=15X15
unmatched non-prioritized	0.0490 (0.0524)	0.9886 (0.9716)	
matched blister	0.0348 (0.0544)	0.4751 (0.0002)	
matched QoL	0.0422 (0.0550)	0.7044 (0.0000)	
matched prioritized	0.0260 (0.0258)	0.5824 (0.8210)	
	Standardized dif	ference blister outcome	
unmatched blister	0.0438 (0.0450)	0.5138 (0.6650)	
unmatched QoL	0.0490 (0.0528)	0.7940 (0.8888)	NI_1 4×1 4
unmatched prioritized	0.0442 (0.0458)	0.5402 (0.6852)	N=14X14
unmatched non-prioritized	0.0510 (0.0502)	0.9250 (0.9670)	
matched blister	0.0472 (0.0654)	0.2784 (0.0004)	
matched QoL	0.0414 (0.0524)	0.6536 (0.0000)	
matched prioritized	0.0414 (0.0724)	0.2714 (0.5440)	

Two-sided (one-sided) type I error and power

... but less so for the prioritized continuous outcome

	Type I error	Power
	Dichotomize	ed blister outcome
unmatched blister	0.0692 (0.0216)	0.5904 (0.7202)
unmatched QoL	0.0514 (0.0486)	0.8642 (0.9302)
unmatched prioritized	0.0514 (0.0510)	0.9594 (0.9812)
unmatched non-prioritized	0.0490 (0.0524)	0.9886~(0.9716)
matched blister	0.0348 (0.0544)	0.4751 (0.0002)
matched QoL	0.0422 (0.0550)	0.7044 (0.0000)
matched prioritized	0.0260 (0.0258)	0.5824 (0.8210)
	Standardized diff	ference blister outcome
unmatched blister	0.0438 (0.0450)	0.5138 (0.6650)
unmatched QoL	0.0490 (0.0528)	0.7940 (0.8888)
unmatched prioritized	0.0442 (0.0458)	0.5402 (0.6852)
unmatched non-prioritized	0.0510 (0.0502)	0.9250 (0.9670)
matched blister	0.0472 (0.0654)	0.2784 (0.0004)
matched QoL	0.0414 (0.0524)	0.6536 (0.0000)
matched prioritized	0.0414 (0.0724)	0.2714 (0.5440)

Two-sided (one-sided) type I error and power

Univariately: little evidence of a treatment effect

		# wins	#losses	#ties	Net Benefit (95%CI)	p-value one-sided	p-value two-sided
			D	ichotor	nized blister outcome +	- QoL	
matched univariate GP	'C QoL	9	0	4	0.6923(NA;NA)	0.0013	0.0027
matched prior GPC							
	Binary	5	2	6	0.2308 (-0.1716;0.5548)	0.1284	0.2568
	QoL	5	0		0.2		
(Overall	10	2	1	0.6154 (0.0879;0.8784)	0.0105	0.0209
unmatched prior GPC		I			. ,		
	Binary	99	24		0.3333		
	QoL	72	14		0.2578		
(Overall	171	38	16	0.5911 (0.1771;1.0000)	0.0026	0.0051
unmatched non-prior G	PC				(
ГГ	Binary	99	24	102	0.3333	0.0351	0.0701
-	QoĹ	162	22	41	0.6222	0.0010	0.0019
(Overall				0.4778 (0.1719:0.7836)	0.0011	0.0022
			Standa	rdized	difference blister outco	me + QoL	
matched univariate GP	C QoL	8	0	4	0.6667 (NA:NA)	0.0023	0.0047
matched prior GPC							
	Count	5	5	2	0 (-0.4525;0.4525)	0.5000	1.0000
	QoL	2	0		0.2		
(Overall	7	5	0	0.1667 (-0.3623;0.6148)	0.2819	0.5637
unmatched prior GPC					(, ,		
	Count	130	61		0.3520		
	Qol	4	0		0.0204		
(Overall	134	61	1	0.3724 (-0.0628:0.8077)	0.0467	0.0935
unmatched non-prior G	PC			-	(0.0020,0.0011)	0.0101	0.0000
annaterica non-prior d	Count	130	61	5	0.3520	0.0562	0.1124
L	Qol	141	19	36	0.6724	0.0013	0.0027
(Overall	171	1.5	50	0.4872 (0.1482-0.8263)	0.0024	0.0021
(overall				0.4012 (0.1402,0.0203)	0.0024	0.0049

Multivariately: evidence of a treatment effect,...

	# wins	#losses	#ties	Net Benefit (95%CI)	p-value one-sided	p-value two-side
		D	ichoto	mized blister outcome -	+ QoL	
matched univariate GPC QoL	9	0	4	0.6923(NA;NA)	0.0013	0.0027
matched prior GPC						
Binary	5	2	6	0.2308 (-0.1716;0.5548)	0.1284	0.2568
Qol	5	0		0.2		
Overall	10	2	1	0.6154 (0.0879;0.8784)	0.0105	0.0209
unmatched prior GPC						
Binary	99	24		0.3333		
QoL	72	14		0.2578		
Overall	171	38	16	0.5911 (0.1771;1.0000)	0.0026	0.0051
unmatched non-prior GPC						
Binary	99	24	102	0.3333	0.0351	0.0701
QoL	162	22	41	0.6222	0.0010	0.0019
Overall				0.4778 (0.1719;0.7836)	0.0011	0.0022
		Standa	ardized	difference blister outco	ome + QoL	
matched univariate GPC QoL	8	0	4	0.6667 (NA;NA)	0.0023	0.0047
matched prior GPC						
Count	5	5	2	0 (-0.4525;0.4525)	0.5000	1.0000
QoL	2	0		0.2		
Overall	7	5	0	0.1667 (-0.3623;0.6148)	0.2819	0.5637
unmatched prior GPC						
Count	130	61		0.3520		
Qol	4	0		0.0204		
Overall	134	61	1	0.3724 (-0.0628;0.8077)	0.0467	0.0935
unmatched non-prior GPC			_			
Count	130	61	5	0.3520	0.0562	0.1124
QoL	141	19	36	0.6224	0.0013	0.0027
Overall				0.4872 (0.1482;0.8263)	0.0024	0.0049

... mainly in first treatment period

	# \	wins	#losses	#ties	Net Benefit (95%CI)	p-value one-sided	p-value two-sided
					Period 1		
unmatched prior GPC							
Bin	30		3		0.4821		
QoL	17		0		0.3036		
Overall	47		3	6	0.7857 (0.2079;1.3635)	0.0038	0.0077
unmatched non-prior GPC							
Bin	30		3	23	0.4821	0.0331	0.0662
QoL	43		2	11	0.7321	0.0038	0.0076
Overall					0.6071(0.1261;1.0882)	0.0067	0.0134
	1				Period 2		
unmatched prior GPC							
Bin	18		5		0.2321		
QoL	16		9		0.125		
Overall	34		14	8	0.3571 (-0.2346;0.9489)	0.1184	0.2368
unmatched non-prior GPC							
Bin	18		5	33	0.2321	0.1636	0.3271
QoL	16		9	31	0.4464	0.0693	0.1385
Overall					0.3393(-0.0737;0.7522)	0.0537	0.1073

Conclusions

Conclusions

- The GPC methodology is very flexible.
- It allows for a combination of any type and any number of outcomes, including patient relevant outcomes.
- Takes account of the correlation between outcomes.
- May increase power, compared to a univariate outcome.
- Allows for an easy interpretable treatment effect and gives insight into the partial contribution of outcomes to the overall result.
- The exact permutation is easy, fast and precise even in very small samples (Available in SAS, R and under development in Python).

Questions ?

Interuniversity Institute for Biostatistics and statistical Bioinformatics

Johan Verbeeck

johan.verbeeck@uhasselt.be

Data Science Institute/I-Biostat

UHasselt - Belgium

References

- Barnard, G.A. (1947). Significance tests for 2×2 tables. *Biometrika*, 34:123–138.
- Buyse, M. (2010). Generalized pairwise comparisons of prioritized outcomes in the two sample problem. *Statistics in Medicine*, 29:3245–3257.
- Coakley, C.W., et al. (1996). Versions of the sign gest in the presence of ties. *Biometrics* 52, 1242-1251.
- Fagerland, M., et al. (2013). The McNemar test for binary matched-pairs data: mid-p and asymptotic are better than exact conditional. *BMC Medical Research Methodology*, 13:91.
- Konietschke, F., et al. (2012). A studentized permutation test for the nonparametric Behrens-Fisher problem in paired data. *Electronic Journal of Statistics*. 6:1358–1372.
- O'Brien, P. (1984). Procedures for comparing samples with multiple endpoints. Biometrics, 40(4):1079–1087.

References

- Pocock et al. (2012). The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. *European Heart Journal*, 33:176–182.
- Verbeeck, J., et al. (2019) Generalized pairwise comparison methods to analyze (non)prioritized composite endpoints. *Statistics in Medicine*, 38:5641–5656.
- Verbeeck, J., et al. (2020) Evaluation of inferential methods for the net benefit and win ratio statistics. *Journal of Biopharmaceutical Statistics*, 30(5):765-782.
- Verbeeck, J., et al. (2021) Unbiasedness and efficiency of non-parametric and UMVUE estimators of the probabilistic index and related statistics. *Statistical Methods in Medical Research*, 30(3), 747-768.
- Wally, V., et al. (2018). Diacerein orphan drug development for epidermolysis bullosa simplex: A phase 2/3 randomized, placebo-controlled, double-blind clinical trial. *J Am Acad Dermatol.* 78:892-901.